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Abstract

An artificial neural network (ANN) model for the prediction of retention times in high-performance liquid chromatography (HPLC) was
developed and optimized. A three-layer feed-forward ANN has been used to model retention behavior of nine phenols as a function of mobile
phase composition (methanol-acetic acid mobile phase). The number of hidden layer nodes, number of iteration steps and the number of
experimental data points used for training set were optimized. By using a relatively small amount of experimental data (25 experimental
data points in the training set), a very accurate prediction of the retention (percentage normalized differences between the predicted and the
experimental data less than 0.6%) was obtained. It was shown that the prediction ability of ANN model linearly decreased with the reduction
of number of experiments for the training data set. The results obtained demonstrate that ANN offers a straightforward way for retention
modeling in isocratic HPLC separation of a complex mixture of compounds widely differeitiand logK,, values.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction applied to a wide variety of chemical problems such as
guantitative structure—activity relationship (QSAR) studies
High-performance liquid chromatography (HPLC) was [5], simulation of mass spectfé], prediction of carbon-13
developed during the last few decades as a powerful sepaNMR chemical shif{7], modeling of ion[8], ion interaction
ration technique and it has been increasingly applied to the[9], gas [10]and liquid[11-17] chromatography.
analyses of organic pollutants in environmental samples. ANNs are computational simulations of biological
The method enables complex mixtures to be separated intonetworks. Different types of neural-networks have been
individual compounds at ambient temperature or slightly developed to simulate different tasks of the human brain:
above and therefore it is ideally suited for compounds classification and pattern recognitida8,19]. An ANN
of limited thermal stability. The separation of phenols by consists of many pathways and nodes organized into a se-
HPLC has already been studigd-4]. However, the inter-  quence of layers. The first layer is an input layer with one
pretation of retention behavior and the optimization of the node for each variable or feature of the data. The last layer
separation performed with such a technique shows some dif-is an output layer consisting of one node for each variable to
ficulties due to different parameters (such as mobile phasebe investigated. In between, there is a series of one or more
composition and pH) that affect retention significantly. hidden layer(s) consisting of a number of nodes, which are
Artificial neural networks (ANNSs) offer attractive pos- responsible for learning. Nodes of one layer are connected
sibilities for non-linear modeling and optimization when to the nodes of the succeeding layer. Each connection is
underlying mechanisms are very complex. ANNs have beenrepresented by a number called weight. Initially, a learning
phase is defined in which each of the input parameters is
mspondmg author. Tel£381-11-3303647: applied to a proces_sing elem_ent. The Weights between these
fax: +381-11-3370387. parameters are adjusted until the output is correct. The sys-
E-mail address: tanjadj@eunet.yu (T. Vasilje®). tem can then be applied to unknowns. A detailed description
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of the theory behind an ANN applied in chromatography to measure retention times according to experimental design
has been adequately presented elsewfE8e9]. Metting matrices. The aproach of changing the mobile phase com-
et al. [11] pointed out that the response surface for linear position and pH as ANN parameters was chosen because
and non-linear changing capacity factors in HPLC can be of the predominant role of these two variables in retention
estimated by ANNs with results better than those obtained behavior in RP-HPLG13,14,17].

with linear and non-linear regression models.

There are two major approaches to the ANN model-
ing in HPLC. One is the prediction of chromatographic 2. Experimental
behavior based on the molecular structure of compounds,

i.e. quantitative structure—retention relationships (QSRR) 2.1. Reagents

methodology12—-14]. Loukas et a[12] used this approach

to predict retention behavior of 25 compounds on two dif-  Individual stock solutions (1.0mgmt) of nine phe-
ferent stationary phases and obtained a linear dependenceols, which belong to the U.S.EPA priority pollu-
between the predicted and obtained logarithms of capacitytant list of phenols: (1) phenol, (2) 4-nitrophenol, (3)
factors, with correlation coefficients 0.996 and 0.992. Tham 2-chlorophenol, (4) 2,4-dinitrophenol, (5) 2-nitrophenol,
et al. [13] used the QSRR method to model HPLC sepa- (6) 2,4-dimethylphenol, (7) 2-methyl-4,6-dinitrophenol, (8)
ration of 18 selected amino acids. They obtained a testing 4-chloro-3-methylphenol, (9) 2,4-dichlorophenol, obtained
set Root Mean Square (RMS) error of 0.8377. The mobile from ChemService (West Chester, USA), were used to
phase composition was the main factor effecting the sepa-prepare a working mixture. This mixture was diluted ap-
ration of amino acids with the output sensitivity of over 40 propriately by the mobile phase to prepare apgonli—!

%. QSRR was used to investigate physico-chemical param-solution of each phenol. HPLC-grade methanol, acetic acid
eters related to the retention times of three pharmaceutical(glac.) (Merck, Darmstadt, Germany) and Milli-Q (Milli-
compoundg14]. The authors used 10 molecular descrip- pore Co., Bedford, USA) processed water were used for
tors, mobile phase composition and pH as ANN inputs. The these experiments.

results proved the dominant role of the concentration of the

organic modifier and pH in the mobile phase to the reten- 2.2. Instrumentation

tion properties. A sensitivity report showed that descriptor

contributions to the model varied from 2 to 9%. The HPLC system consisted of a Model SP8810 pump,

The other approach is the use of a preliminary exper- a Spectra200 variable-wavelength detector (both from
imental set as ANN parametef$1,15-17]. By this ap-  Spectra-physics, San Hose, USA), and a Rheodyne (Co-
proach, Zhao et al[15] modeled the retention behavior tati, USA) 7125 injector fitted with a 10l sample loop. A
of 32 solutes in a methanol—tetrahydrofuran—water systemLichrochart ODS (25cmx 4.0mm x 10pum) column
and 49 solutes in a methanol-acetonitrile—water system(Merck, Darmstadt, Germany) was kept at ambient temper-
as a function of mobile phase compositions in HPLC. ature. The mobile phases consisted of methanol (30—70%
The average deviation of all data points was 8.74% for (v/v)) and acetic acid (0.5-1.5% (v/v)). The separation and
the tetrahydrofuran-containing system and 7.33% for the detection were performed at ambient temperature, at a flow
acetonitrile-containing system. Marengo et[&b] used the rate of 1.0mImir®, and UV detection at = 280 nm.
same approach to model an ion interaction HPLC method
for the simultaneous separation of 20 typical antimicrobial 2.3. Experimental design
agents. The predictions were very satisfactory with the
multiple correlation coefficient higher than 0.97, except for  The experimental data points (mobile phase composi-
one substance. Agaton@vKustrin et al.[17] used ANN tion) in experimental domain (30-70% (v/v) methanol and
for response surface modeling in HPLC optimization. They 0.5-1.5% (v/v) acetic acid in the mobile phase), used to make
studied the combined pH and mobile phase composition the ANN training set, were chosen as showiTable 1.
effect on the reverse-phase liquid chromatographic behav-
ior of amiloride and hydrochlorothiazide. The average error 2.4. Neural network
percentages obtained in this work were 0.09 and 0.13%.

In the present work an ANN was employed and opti-  The measured retention data were used to train and test
mized to model the retention behavior of nine phenols in ANN. Prior to ANN training, the retention time data were
their isocratic elution using a methanol-acetic acid—water normalized. Twenty-five experimental points (i.e. 25 differ-
mobile phase. Phenols are interesting not only from an eco-ent mobile phase compositions) were used for ANN training.
logical point of view, as priority pollutants, but also because A three-layer (input, hidden and output) feed-forward neural
of their HPLC behaviour due to a wide difference in their network was used to analyze nonlinear multivariate data.
pKa (4.09-9.6) and lo#ew (1.50-3.10) values, so similar To predict the retention time accurately and conveniently,
model may be applied to a wide variety of compounds. To the “leave—10%—out” method of cross-validation was ap-
make an ANN training set, we used preliminary experiments plied. With this method, 10% of the data in the training set
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Table 1 Input layer Hidden layer Output layer
Experimental data points used to make ANN model Oe—— 7O
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(A) Acetic acid, (B) methanol. Designsil() four experimental points by /). .t) H % ““1‘}5
the use of full factorial design@®) five experimental points by the use of 0& f~7 O /0" 19
full factorial design and the central pointA{ nine experimental points 2 v AN e
by the use of three level full factorial desigr®) 25 experimental points ! > 'I‘l_ 20
evenly distributed in the experimental domain. y Sl /
- 12 ‘ 21
Bias Bias

are not used to update the weights. Therefore, these 10%

can be used as an indication of whether or not memorization”'9: - Schemalic representation of a three-layer feed-forward neural
. network used in this work. Input layer nodes—1, 2; hidden layer nodes—3,
has been taking place.

; ) . 4,5,6,7,8,9, 10, 11, 12; output layer nodes—13, 14, 15, 16, 17, 18,
A new experimental point, randomly chosen and not in- 19, 20, 21.

cluded in the training set, was used to test the prediction

power of applied ANN. The ANN systems were simulated wherey, is the learning ratey is the momentum, ané(z) =

using a QwikNet ANN simulator (Craig Jensen, Redmond, 3E/gw is the actual error at timee The learning ratey, con-

USA). trols the rate at which the network learns. Here, an adaptive
learning rate method, delta-bar-delta, in which each weight
has its own learning rate was employed. The learning rates

3. Results and discussion n(t) are updated as follows:

3.1. ANN topology . i o - D >0
An(t) = { —bn@), if §¢—1)58@) <0 4)
A three-layer feed-forward neural network trained with 0, else

an error back-propagation algorithm was used to model the

retention of phenols as a function of mobile phase compo- Wherex = 0.06 andb = 0.2 were chosen constants, ahd
sition. In these networks, signals propagate from the input i the exponential average of past values:of
layer thrqugh the hiddgn layer to the output layer. A node 5 — (1 — 0)s(r) + 65(t — 1) (5)
thus receives signals via connections from other nodes or the

outside world in the case of the input layer. The net input The momentumg;, controlling the influence of the last
for a nodej is given by: weight change on the current weight update was set at zero.

Pattern clipping, which specifies the degree of participation

net; = Z wjio; (1)
j
1.4

wherei represents nodes in the previous layej, is the
weight associated with the connection from nade node 129 /
j, ando; is the output of node. The output of a node is 1od
determined by the transfer function and the net input of
the node. The following sigmoidal transfer function in the 5 os-
hidden layer was used: 5 B

g 0.6
flnet) = % ) i 0.4 \- —

1+ e (ne./Jr ./) . /.
whered; is a bias term or threshold value of nodespon- 0.2 /
sible for accommodation nonzero offsets in the data. L
The training algorithm used was selected by a trial-and-errc 1 —

process. The weights are updated after each epoch as follow:

IE(@)

A= 500

+ o Awij(t — 1) 3)

5 6 7

8

9 0 11 12 13 14

The number of nodes in hidden layer

15 16

Fig. 2. Hidden layer node numbers vs. RMS error.
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of each trained pattern in future learning, input noise, weight 18
decay and error margin were set at 1, 0, 0 and 0.1, respec: 45
tively.

ANN used in this work is schematically represented in ]
Fig. 1. The input layer consists of two nodes representing 12+
eluent concentration of methanol and acetic acid in the mo- ]
bile phase. The output layer consists of nine nodes repre-g
senting retention times of nine phenols. In addition, there isY ©7]
a bias (neuron activation threshold) connected to the nodes= 64
in the hidden and output layers (but not in the input layer)
via modifiable weighted connections. The weights, corre-
sponding to the optimized ANN are presentedTable 2. 27
The weights are arranged in rows. Each row is made up of g
connections from all nodes of the previous layer, to a node .
in the current layer. * s 19 45 a0

14

10 A

8-

Number of training points (Patterns)

3.2. ANN optimization

Fig. 3. Number of experimental data points used for training set vs. RMS

The number of nodes in the hidden layer, number of itera- eror

tion steps, and the number of experimental data points usednumber of learning epochs for RMS value below 0.1 was
for the training set were optimized. In order to determine around 900.
the optimal number of hidden layer nodes, ANNs with dif-
ferent numbers of hidden nodes were trained. The number3.3. ANN validation
of hidden nodes was varied from 5 to 15 and RMS errors
were calculated: The optimized neural network retention model was used to
predict retention times for nine phenols. A randomly selected
Y i(0i — di)? experimental point, not previously included in the training
n 6) set, was used for the method validation. From the observed
and ANN predicted values of retention times of all phenols
whered; is a desired output (exp. values)}, is the actual  studied in this work, the percentage-normalized difference
output (ANN predicted values) andis the number of com-  (%d) was calculated
pounds in the analyzed set. AccordingFfig. 2, ANN with
10 hidden nodes had the lowest RMS error, and that number%d =
of nodes was chosen for further optimization. IR.exp
Reduction in the number of experimental data points used wheretg exp is the experimentally determined retention time
for the training set is crucial for the development of the re- andtr preq is the ANN predicted retention time.
tention model without wasting time on unnecessary exper-  The results are presentedfig. 5. In general, all %dal-
iments. Also, it should be provided that the small number yes are in excellent agreement withif®.003% except one
of experimental points in the training set do not affect the

RMS =

1 — 1
R,exp R,pred .100 (7)

predictive ability of the model. Therefore, it is important to 109

determine the optimal number of experimental data points S train error
used for the training sekig. 3shows a significant influence g - - - -validation error
of the number of experimental data points used for the train- test error

ing set on the ANN accuracy. The RMS error value linearly
decreases with the increase in the number of experimen-
tal points (correlation coefficient = 0.9997). For a good £
agreement between the experimental and the predicted re®
tention times, the value of RMS error should be lower than
0.1. With 25 experimental data sets, the value of RMS error
dropped below 0.1. Therefore, 25 experimental points were
chosen for ANN training.

To select the best learning times, RMS error values of
the training, validation and the testing set versus learning .
epochs were plotted (Fig. 4). The network training was Learning epochs
stopped when the performance goal of 0.1 for RMS error rig. 4. Number of iteration steps vs. RMS error of training, validation
was reached. It is evident from the testing curve that the and testing sets.

T T T T T T T 1
200 400 600 800 1000
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Table 2
Weight values in optimized neural network presentedrig. 1 (input layer nodes-hidden layer nodes and hidden layer nodes—output layer nodes)
Input nodes Bias 1
1 2
Hidden nodes
3 2.81 -0.77 0.92
4 -1.27 0.16 1.22
5 0.92 0.18 —0.64
6 3.39 2.51 5.75
7 11.0 0.96 9.97
8 1.67 0.14 0.91
9 1.22 0.07 —0.92
10 1.90 0.77 0.22
11 -1.81 —0.18 0.01
12 —2.03 —0.35 0.21
Hidden nodes
3 4 5 6 7 8 9 10 11 12 Bias 2
Output nodes
13 —0.64 0.62 —0.06 —0.60 —2.69 —0.56 —0.25 —0.06 3.08 0.56 0.55
14 -0.75 1.22 -0.15 —-1.74 —2.39 —0.29 0.06 —0.08 2.92 0.59 0.60
15 -0.84 1.40 —-0.10 —0.96 —-2.77 -0.75 —0.04 -0.35 1.62 1.14 0.87
16 —0.85 2.03 0.13 —0.94 —2.66 -0.14 0.11 —0.70 1.95 0.72 0.14
17 —0.68 2.13 -0.21 —-0.94 —2.69 —0.44 0.09 -0.25 1.94 0.90 —0.06
18 —0.79 1.27 —0.16 —-1.20 —2.79 -1.11 —0.53 —0.26 1.65 0.66 1.70
19 -1.02 1.15 —0.02 -1.23 -2.80 —0.67 -0.75 -0.37 1.65 0.98 1.36
20 —0.62 2.15 0.01 -1.07 —-2.73 —0.61 -0.33 —0.30 2.14 0.70 0.03
21 -0.81 1.59 0.26 -1.10 -2.81 -0.51 —0.46 —0.10 2.19 1.29 —-0.10
0.010
0.008 | " — 10
0.006 dos
0.004
1 - 404
0.002 -
i ]
5 0.000 . 403 R
5 ] - u S
-0.002 L) | ]
] - 0.2
-0.004
-0.006 - 101
-0.008—_ doo
-0.010 T T T T T T T T T

Phenols

Fig. 5. Percentage-normalized difference between measured and predicted retention times for nine phenols: (1) phenol, (2) 4-nitrophenol, (3) 2-chlorophenol,
(4) 2,4-dinitrophenol, (5) 2-nitrophenol, (6) 2,4-dimethylphenol, (7) 2-methyl-4,6-dinitrophenol, (8) 4-chloro-3-methylphenol, (9) 2,4-dichlorophenol.

(obtained for 2,4-dinitrophenol) having %dlue of 0.57%. layer of ANN, number of iteration steps, and the num-
The results indicate that ANN can be used as a very promis-ber of experimental data points used for the training set
ing tool for retention modeling in HPLC. were optimized. Through the above process, we found out

that the optimum number of hidden layer nodes was 10

and that the number of experimental data points and the

4. Conclusion number of learning epochs to achieve desirable accuracy
(RMS error below 0.1) were 25 and 900, respectively. The

In this work, ANN was used for retention modeling predicted and experimental retention times for eight out of
of phenols in HPLC. The number of nodes in the hidden nine studied phenols were in excellent agreement to within
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+0.003%. However, ANN modeling of the retention of

2,4-dinitrophenol gave somewhat different but still accurate

outputs (0.57%).
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