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Abstract

An artificial neural network (ANN) model for the prediction of retention times in high-performance liquid chromatography (HPLC) was
developed and optimized. A three-layer feed-forward ANN has been used to model retention behavior of nine phenols as a function of mobile
phase composition (methanol-acetic acid mobile phase). The number of hidden layer nodes, number of iteration steps and the number of
experimental data points used for training set were optimized. By using a relatively small amount of experimental data (25 experimental
data points in the training set), a very accurate prediction of the retention (percentage normalized differences between the predicted and the
experimental data less than 0.6%) was obtained. It was shown that the prediction ability of ANN model linearly decreased with the reduction
of number of experiments for the training data set. The results obtained demonstrate that ANN offers a straightforward way for retention
modeling in isocratic HPLC separation of a complex mixture of compounds widely different in pKa and logKow values.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

High-performance liquid chromatography (HPLC) was
developed during the last few decades as a powerful sepa-
ration technique and it has been increasingly applied to the
analyses of organic pollutants in environmental samples.
The method enables complex mixtures to be separated into
individual compounds at ambient temperature or slightly
above and therefore it is ideally suited for compounds
of limited thermal stability. The separation of phenols by
HPLC has already been studied[1–4]. However, the inter-
pretation of retention behavior and the optimization of the
separation performed with such a technique shows some dif-
ficulties due to different parameters (such as mobile phase
composition and pH) that affect retention significantly.

Artificial neural networks (ANNs) offer attractive pos-
sibilities for non-linear modeling and optimization when
underlying mechanisms are very complex. ANNs have been
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applied to a wide variety of chemical problems such as
quantitative structure–activity relationship (QSAR) studies
[5], simulation of mass spectra[6], prediction of carbon-13
NMR chemical shift[7], modeling of ion[8], ion interaction
[9], gas [10]and liquid[11–17]chromatography.

ANNs are computational simulations of biological
networks. Different types of neural-networks have been
developed to simulate different tasks of the human brain:
classification and pattern recognition[18,19]. An ANN
consists of many pathways and nodes organized into a se-
quence of layers. The first layer is an input layer with one
node for each variable or feature of the data. The last layer
is an output layer consisting of one node for each variable to
be investigated. In between, there is a series of one or more
hidden layer(s) consisting of a number of nodes, which are
responsible for learning. Nodes of one layer are connected
to the nodes of the succeeding layer. Each connection is
represented by a number called weight. Initially, a learning
phase is defined in which each of the input parameters is
applied to a processing element. The weights between these
parameters are adjusted until the output is correct. The sys-
tem can then be applied to unknowns. A detailed description
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of the theory behind an ANN applied in chromatography
has been adequately presented elsewhere[18,19]. Metting
et al. [11] pointed out that the response surface for linear
and non-linear changing capacity factors in HPLC can be
estimated by ANNs with results better than those obtained
with linear and non-linear regression models.

There are two major approaches to the ANN model-
ing in HPLC. One is the prediction of chromatographic
behavior based on the molecular structure of compounds,
i.e. quantitative structure–retention relationships (QSRR)
methodology[12–14]. Loukas et al.[12] used this approach
to predict retention behavior of 25 compounds on two dif-
ferent stationary phases and obtained a linear dependence
between the predicted and obtained logarithms of capacity
factors, with correlation coefficients 0.996 and 0.992. Tham
et al. [13] used the QSRR method to model HPLC sepa-
ration of 18 selected amino acids. They obtained a testing
set Root Mean Square (RMS) error of 0.8377. The mobile
phase composition was the main factor effecting the sepa-
ration of amino acids with the output sensitivity of over 40
%. QSRR was used to investigate physico-chemical param-
eters related to the retention times of three pharmaceutical
compounds[14]. The authors used 10 molecular descrip-
tors, mobile phase composition and pH as ANN inputs. The
results proved the dominant role of the concentration of the
organic modifier and pH in the mobile phase to the reten-
tion properties. A sensitivity report showed that descriptor
contributions to the model varied from 2 to 9%.

The other approach is the use of a preliminary exper-
imental set as ANN parameters[11,15–17]. By this ap-
proach, Zhao et al.[15] modeled the retention behavior
of 32 solutes in a methanol–tetrahydrofuran–water system
and 49 solutes in a methanol–acetonitrile–water system
as a function of mobile phase compositions in HPLC.
The average deviation of all data points was 8.74% for
the tetrahydrofuran-containing system and 7.33% for the
acetonitrile-containing system. Marengo et al.[16] used the
same approach to model an ion interaction HPLC method
for the simultaneous separation of 20 typical antimicrobial
agents. The predictions were very satisfactory with the
multiple correlation coefficient higher than 0.97, except for
one substance. Agatonović-Kuštrin et al.[17] used ANN
for response surface modeling in HPLC optimization. They
studied the combined pH and mobile phase composition
effect on the reverse-phase liquid chromatographic behav-
ior of amiloride and hydrochlorothiazide. The average error
percentages obtained in this work were 0.09 and 0.13%.

In the present work an ANN was employed and opti-
mized to model the retention behavior of nine phenols in
their isocratic elution using a methanol–acetic acid–water
mobile phase. Phenols are interesting not only from an eco-
logical point of view, as priority pollutants, but also because
of their HPLC behaviour due to a wide difference in their
pKa (4.09–9.6) and logKow (1.50–3.10) values, so similar
model may be applied to a wide variety of compounds. To
make an ANN training set, we used preliminary experiments

to measure retention times according to experimental design
matrices. The aproach of changing the mobile phase com-
position and pH as ANN parameters was chosen because
of the predominant role of these two variables in retention
behavior in RP-HPLC[13,14,17].

2. Experimental

2.1. Reagents

Individual stock solutions (1.0 mg ml−1) of nine phe-
nols, which belong to the U.S.EPA priority pollu-
tant list of phenols: (1) phenol, (2) 4-nitrophenol, (3)
2-chlorophenol, (4) 2,4-dinitrophenol, (5) 2-nitrophenol,
(6) 2,4-dimethylphenol, (7) 2-methyl-4,6-dinitrophenol, (8)
4-chloro-3-methylphenol, (9) 2,4-dichlorophenol, obtained
from ChemService (West Chester, USA), were used to
prepare a working mixture. This mixture was diluted ap-
propriately by the mobile phase to prepare a 10�g ml−1

solution of each phenol. HPLC-grade methanol, acetic acid
(glac.) (Merck, Darmstadt, Germany) and Milli-Q (Milli-
pore Co., Bedford, USA) processed water were used for
these experiments.

2.2. Instrumentation

The HPLC system consisted of a Model SP8810 pump,
a Spectra200 variable-wavelength detector (both from
Spectra-physics, San Hose, USA), and a Rheodyne (Co-
tati, USA) 7125 injector fitted with a 10�l sample loop. A
Lichrochart ODS (25 cm× 4.0 mm × 10�m) column
(Merck, Darmstadt, Germany) was kept at ambient temper-
ature. The mobile phases consisted of methanol (30–70%
(v/v)) and acetic acid (0.5–1.5% (v/v)). The separation and
detection were performed at ambient temperature, at a flow
rate of 1.0 ml min−1, and UV detection atλ = 280 nm.

2.3. Experimental design

The experimental data points (mobile phase composi-
tion) in experimental domain (30–70% (v/v) methanol and
0.5–1.5% (v/v) acetic acid in the mobile phase), used to make
the ANN training set, were chosen as shown inTable 1.

2.4. Neural network

The measured retention data were used to train and test
ANN. Prior to ANN training, the retention time data were
normalized. Twenty-five experimental points (i.e. 25 differ-
ent mobile phase compositions) were used for ANN training.
A three-layer (input, hidden and output) feed-forward neural
network was used to analyze nonlinear multivariate data.

To predict the retention time accurately and conveniently,
the “leave–10%–out” method of cross-validation was ap-
plied. With this method, 10% of the data in the training set
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Table 1
Experimental data points used to make ANN model

B (%) A (%)

0.5 0.75 1.0 1.25 1.5

30 � � � � � � � � � � � �
40 � � � � �
50 � � � � � � � � �
60 � � � � �
70 � � � � � � � � � � � �

(A) Acetic acid, (B) methanol. Designs: (�) four experimental points by
the use of full factorial design; (�) five experimental points by the use of
full factorial design and the central point; (�) nine experimental points
by the use of three level full factorial design; (�) 25 experimental points
evenly distributed in the experimental domain.

are not used to update the weights. Therefore, these 10%
can be used as an indication of whether or not memorization
has been taking place.

A new experimental point, randomly chosen and not in-
cluded in the training set, was used to test the prediction
power of applied ANN. The ANN systems were simulated
using a QwikNet ANN simulator (Craig Jensen, Redmond,
USA).

3. Results and discussion

3.1. ANN topology

A three-layer feed-forward neural network trained with
an error back-propagation algorithm was used to model the
retention of phenols as a function of mobile phase compo-
sition. In these networks, signals propagate from the input
layer through the hidden layer to the output layer. A node
thus receives signals via connections from other nodes or the
outside world in the case of the input layer. The net input
for a nodej is given by:

netj =
∑

j

wjioi (1)

where i represents nodes in the previous layer,wji is the
weight associated with the connection from nodei to node
j, and oi is the output of nodei. The output of a node is
determined by the transfer function and the net input of
the node. The following sigmoidal transfer function in the
hidden layer was used:

f(netj) = 1

1 + e−(netj+θj)
(2)

whereθj is a bias term or threshold value of nodej respon-
sible for accommodation nonzero offsets in the data.

The training algorithm used was selected by a trial-and-error
process. The weights are updated after each epoch as follows

�wij = −η
∂E(t)

∂w(t)
+ α �wij(t − 1) (3)

Fig. 1. Schematic representation of a three-layer feed-forward neural
network used in this work. Input layer nodes—1, 2; hidden layer nodes—3,
4, 5, 6, 7, 8, 9, 10, 11, 12; output layer nodes—13, 14, 15, 16, 17, 18,
19, 20, 21.

whereη is the learning rate,α is the momentum, andδ(t) =
∂E/∂w is the actual error at timet. The learning rate,η, con-
trols the rate at which the network learns. Here, an adaptive
learning rate method, delta-bar-delta, in which each weight
has its own learning rate was employed. The learning rates
η(t) are updated as follows:

�η(t) =




κ, if δ̄(t − 1)δ(t) > 0

−bη(t), if δ̄(t − 1)δ(t) < 0

0, else

(4)

whereκ = 0.06 andb = 0.2 were chosen constants, andδ

is the exponential average of past values ofδ:

δ̄(t) = (1 − θ)δ(t) + θδ̄(t − 1) (5)

The momentum,α, controlling the influence of the last
weight change on the current weight update was set at zero.
Pattern clipping, which specifies the degree of participation

Fig. 2. Hidden layer node numbers vs. RMS error.
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of each trained pattern in future learning, input noise, weight
decay and error margin were set at 1, 0, 0 and 0.1, respec-
tively.

ANN used in this work is schematically represented in
Fig. 1. The input layer consists of two nodes representing
eluent concentration of methanol and acetic acid in the mo-
bile phase. The output layer consists of nine nodes repre-
senting retention times of nine phenols. In addition, there is
a bias (neuron activation threshold) connected to the nodes
in the hidden and output layers (but not in the input layer)
via modifiable weighted connections. The weights, corre-
sponding to the optimized ANN are presented inTable 2.
The weights are arranged in rows. Each row is made up of
connections from all nodes of the previous layer, to a node
in the current layer.

3.2. ANN optimization

The number of nodes in the hidden layer, number of itera-
tion steps, and the number of experimental data points used
for the training set were optimized. In order to determine
the optimal number of hidden layer nodes, ANNs with dif-
ferent numbers of hidden nodes were trained. The number
of hidden nodes was varied from 5 to 15 and RMS errors
were calculated:

RMS =
√∑n

i=1(oi − di)2

n
(6)

wheredi is a desired output (exp. values),oi is the actual
output (ANN predicted values) andn is the number of com-
pounds in the analyzed set. According toFig. 2, ANN with
10 hidden nodes had the lowest RMS error, and that number
of nodes was chosen for further optimization.

Reduction in the number of experimental data points used
for the training set is crucial for the development of the re-
tention model without wasting time on unnecessary exper-
iments. Also, it should be provided that the small number
of experimental points in the training set do not affect the
predictive ability of the model. Therefore, it is important to
determine the optimal number of experimental data points
used for the training set.Fig. 3shows a significant influence
of the number of experimental data points used for the train-
ing set on the ANN accuracy. The RMS error value linearly
decreases with the increase in the number of experimen-
tal points (correlation coefficientr = 0.9997). For a good
agreement between the experimental and the predicted re-
tention times, the value of RMS error should be lower than
0.1. With 25 experimental data sets, the value of RMS error
dropped below 0.1. Therefore, 25 experimental points were
chosen for ANN training.

To select the best learning times, RMS error values of
the training, validation and the testing set versus learning
epochs were plotted (Fig. 4). The network training was
stopped when the performance goal of 0.1 for RMS error
was reached. It is evident from the testing curve that the

Fig. 3. Number of experimental data points used for training set vs. RMS
error.

number of learning epochs for RMS value below 0.1 was
around 900.

3.3. ANN validation

The optimized neural network retention model was used to
predict retention times for nine phenols. A randomly selected
experimental point, not previously included in the training
set, was used for the method validation. From the observed
and ANN predicted values of retention times of all phenols
studied in this work, the percentage-normalized difference
(%d) was calculated

%d = tR,exp − tR,pred

tR,exp
· 100 (7)

wheretR,exp is the experimentally determined retention time
andtR,pred is the ANN predicted retention time.

The results are presented inFig. 5. In general, all %dval-
ues are in excellent agreement within±0.003% except one

Fig. 4. Number of iteration steps vs. RMS error of training, validation
and testing sets.
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Table 2
Weight values in optimized neural network presented inFig. 1 (input layer nodes–hidden layer nodes and hidden layer nodes–output layer nodes)

Input nodes Bias 1

1 2

Hidden nodes
3 2.81 −0.77 0.92
4 −1.27 0.16 1.22
5 0.92 0.18 −0.64
6 3.39 2.51 5.75
7 11.0 0.96 9.97
8 1.67 0.14 0.91
9 1.22 0.07 −0.92

10 1.90 0.77 0.22
11 −1.81 −0.18 0.01
12 −2.03 −0.35 0.21

Hidden nodes

3 4 5 6 7 8 9 10 11 12 Bias 2

Output nodes
13 −0.64 0.62 −0.06 −0.60 −2.69 −0.56 −0.25 −0.06 3.08 0.56 0.55
14 −0.75 1.22 −0.15 −1.74 −2.39 −0.29 0.06 −0.08 2.92 0.59 0.60
15 −0.84 1.40 −0.10 −0.96 −2.77 −0.75 −0.04 −0.35 1.62 1.14 0.87
16 −0.85 2.03 0.13 −0.94 −2.66 −0.14 0.11 −0.70 1.95 0.72 0.14
17 −0.68 2.13 −0.21 −0.94 −2.69 −0.44 0.09 −0.25 1.94 0.90 −0.06
18 −0.79 1.27 −0.16 −1.20 −2.79 −1.11 −0.53 −0.26 1.65 0.66 1.70
19 −1.02 1.15 −0.02 −1.23 −2.80 −0.67 −0.75 −0.37 1.65 0.98 1.36
20 −0.62 2.15 0.01 −1.07 −2.73 −0.61 −0.33 −0.30 2.14 0.70 0.03
21 −0.81 1.59 0.26 −1.10 −2.81 −0.51 −0.46 −0.10 2.19 1.29 −0.10

Fig. 5. Percentage-normalized difference between measured and predicted retention times for nine phenols: (1) phenol, (2) 4-nitrophenol, (3) 2-chlorophenol,
(4) 2,4-dinitrophenol, (5) 2-nitrophenol, (6) 2,4-dimethylphenol, (7) 2-methyl-4,6-dinitrophenol, (8) 4-chloro-3-methylphenol, (9) 2,4-dichlorophenol.

(obtained for 2,4-dinitrophenol) having %dvalue of 0.57%.
The results indicate that ANN can be used as a very promis-
ing tool for retention modeling in HPLC.

4. Conclusion

In this work, ANN was used for retention modeling
of phenols in HPLC. The number of nodes in the hidden

layer of ANN, number of iteration steps, and the num-
ber of experimental data points used for the training set
were optimized. Through the above process, we found out
that the optimum number of hidden layer nodes was 10
and that the number of experimental data points and the
number of learning epochs to achieve desirable accuracy
(RMS error below 0.1) were 25 and 900, respectively. The
predicted and experimental retention times for eight out of
nine studied phenols were in excellent agreement to within



790 T. Vasiljević et al. / Talanta 64 (2004) 785–790

±0.003%. However, ANN modeling of the retention of
2,4-dinitrophenol gave somewhat different but still accurate
outputs (0.57%).

In general, these results show that ANN can be a very
satisfactory tool in modeling of HPLC separation of com-
pounds, such as phenols, of widely different pKa (4.09–9.6)
and logKow (1.50–3.10).
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